
Раздел: | Алгебра |
Слайдов: | 28 |
Слов: | 756 |
Символов: | 5601 |
Просмотров: | 7 |
Скачиваний: | 0 |
Загрузка: | онлайн |
Размер: | 1.92 MB |
Тип: | ppt / pptx для PowerPoint/Impress |
Теги: | #теор, #вероятн, #развит, #математик, #случайн, #наук, #вклад, #задач, #игрок, #кост |
Здесь вы можете просмотреть и скачать доклад по теме «Из истории Теории вероятностей», размещенный в категории «Алгебра», который поможет вам успешно провести свое мероприятие или подготовиться к занятию.
Из истории «Теории вероятностей»
Автор проекта Автор проекта ученица 10 класса «А» ГОУ СОШ № 420 г. Москвы Лавренова Юлия Руководитель проекта учитель математики ГОУ СОШ № 420 г. Москвы Афанасьева С. В.
Вечные истины Математику многие любят за ее вечные истины: дважды два всегда четыре, сумма четных чисел четна, а площадь прямоугольника равна произведению его смежных сторон.
Случайные события Реальная жизнь оказывается не такой простой и однозначной. Исходы многих явлений невозможно предсказать заранее, какой бы полной информацией мы о них не располагали.
Случай имеет свои законы ! Однако случай тоже имеет свои законы, которые начинают проявляться при многократном повторении случайных явлений.
Случайность и здравый смысл «Теория вероятностей есть в сущности не что иное, как здравый смысл, сведенной к исчислению» Лаплас
В настоящее время Теория вероятностей имеет статус точной науки наравне с арифметикой, алгеброй, геометрией, тригонометрией и т. д. Этот раздел математики уже входит в школьные учебники и весьма вероятно, что в скором времени будет включен в программу экзамена. А начиналось все весьма своеобразно…
Азартные игры Богатый материал для наблюдения за случайностью на протяжении многих веков давали азартные игры
У истоков науки В археологических раскопках специально обработанные для игры кости животных встречаются, начиная с V века до н. э.
Закономерности в случайных событиях Люди, многократно следившие за бросанием игральных костей, замечали некоторые закономерности, управляющие этой игрой. Результаты этих наблюдений формулировались как «Золотые правила» и были известны многим игрокам. Однако первые вычисления появились только в X-XI веках.
Знаменитая задача Одна из самых знаменитых задач, способствовавших развитию теории вероятностей, была задача о разделе ставки, помещенная в книге Луки Паччиоли (1445- ок. 1514). Книга называлась «Сумма знаний по арифметике, геометрии, отношении и пропорции» и была опубликована в Венеции в 1494 году.
Задача Паччиоли Двое играют в некоторую игру, где шансы на победу у каждого игрока одинаковы. Игроки договорились играть до 6 побед, но игра остановилась, когда у одного было 5 побед, а у другого – 3. Как следует разделить приз? (Сам Паччиоли считал, что приз надо делить пропорционально количеству выигранных партий. Однако правильный ответ не так прост. )
Новые имена Следующим человеком, который внес значительный вклад в осмысление законов, управляющих случаем, был Галилео Галилей (1564 -1642). Именно он заметил, что результаты измерений носят случайный характер. Результаты физических экспериментов нуждаются в поправках, основанных на теории вероятностей.
Новые имена Важный этап в развитии теории вероятностей связан с именами французских математиков Блеза Паскаля (1623 -1662) и Пьера Ферма (1601- 1665). В ответах этих ученых на запросы азартных игроков и переписке между собой были введены основные понятия этой теории – вероятность события и математическое ожидание
Задача кавалера де Мере При четырехкратном бросании игральной кости что происходит чаще: выпадет шестерка хотя бы один раз или же шестерка не появится ни разу?
Решение задачи кавалера де Мере При четырехкратном бросании игральной кости что происходит чаще: выпадет шестерка хотя бы один раз или же шестерка не появится ни разу?
На пути становления науки Выдающийся голландский математик, механик, астроном и изобретатель Х. Гюйгенс (1629 - 1695) под влиянием переписки Паскаля и Ферма заинтересовался задачами вероятностного характера, результатом чего явилась работа «О расчетах в азартных играх». Трактат Гюйгенса выдержал несколько изданий и был единственной книгой по теории вероятностей в XVII веке.
На пути становления науки Но как математическая наука теории вероятностей начинается с работы выдающегося швейцарского математика Якоба Бернулли (1654 -1705) «Искусство предположений». В этом трактате доказано ряд теорем, в том числе и самая известная теорема «Закон больших чисел»
На пути становления науки Развитие естествознания и техники точных измерений, военного дела и связанной с ней теории стрельбы, учение о молекулах в кинетической теории газов ставило перед учеными конца XVIII века все новые и новые задачи теории вероятностей
История продолжается Крупнейшими представителями теории вероятностей как науки были математики П. Лаплас (1749-1827) К. Гаусс (1777-1855) С. Пуассон (1781-1840)
Русский период в развитии теории вероятностей Особенно быстро теория вероятностей развивалась во второй половине XIX и XX вв. Здесь фундаментальные открытия были сделаны математиками Петербургской школы П. Л. Чебышёвым (1821-1894), А. М. Ляпуновым (1857-1918), А. А. Марковым (1856-1922).
Недалекое прошлое Строгое логическое обоснование теории вероятностей произошло в XX в. и связано, в первую очередь, с именами математиков
С. Н. Бернштейн (1880 - 1968) Вклад в развитие теории вероятностей В 1917 году разработал самую первую по времени аксиоматику теории вероятностей.
А. Н. Колмогоров ( 1903 - 1987 ) Вклад в развитие теории вероятностей Положил начало общей теории случайных процессов. В 1933 году разработал аксиоматику, которая в настоящее время является общепринятой.
А. Я. Хинчин (1894 - 1959) Вклад в развитие теории вероятностей Положил начало общей теории случайных процессов. Разработал свою аксиоматику теории вероятностей.
Б. П. Гнеденко ( 1912-1995 ) Вклад в развитие теории вероятностей
Ю. В. Линник (1915 - 1972) Вклад в развитие теории вероятностей Основные труды по теории чисел, теории вероятности и математической статистики.
Благодарю за внимание! Предлагаю вам посмотреть следующую часть презентации «Основные понятия теории вероятностей»
Похожие презентации по алгебре